Hierarchies of damage induced loss of mechanical properties in calcified bone after in vivo fatigue loading of rat ulnae.
نویسندگان
چکیده
During fatigue loading of whole bone, damage to bone tissue accumulates, coalesces and leads to fractures. Whether damage affects tissue material properties similarly at the nanoscale (less than 1 μm), microscale (less than 1 mm), and whole bone scale has not been fully evaluated. Therefore, in this study, we examine scale-dependent loss of calcified tissue material properties in rat ulnae, after fatigue loading of rat forearms using the forearm compression model. In vivo fatigue loading was conducted on the right forearms until a displacement end-point was reached. The non-fatigued left forearms served as contralateral controls. Subsequently, three-point bending tests to failure on excised ulnae demonstrated a 41% and 49% reduction in the stiffness and ultimate strength as compared to contralateral control ulnae, respectively. Depth-sensing microindentation demonstrated an average decrease in material properties, such as elastic modulus and hardness, of 28% and 29% respectively. Nanoindentation measured elastic modulus and hardness were reduced by 26% and 29% in damaged bone relative to contralateral controls, respectively. The increased loss of whole bone material properties compared to tissue material properties measured using indentation is mainly attributed to the presence of a macrocrack located in the medial compressive region at the site of peak strains. The similar magnitude of changes in material properties by microindentation and nanoindentation is attributed to damage that may originate at an even smaller scale, as inferred from 10% differences in connectivity of osteocyte canaliculi in damaged bone.
منابع مشابه
Effect of athletic fatigue damage and the associated bone targeted remodeling in the rat ulna
BACKGROUND Fatigue damage of the long bones is prevalent in running athletes and military recruits due to vigorous mid- and long-term physical activity. The current study attempted to know the features of bony athletic fatigue damage and to explore the mechanism of fatigue damage repair through bone targeted remodeling process. METHODS Right ulnae of the Wistar rats were fatigue loaded on an ...
متن کاملUse of the rat forelimb compression model to create discrete levels of bone damage in vivo.
Skeletal responses to damage are significant for understanding the etiology of stress fractures and possibly osteoporotic fractures. We refined the rat forelimb-loading model to produce a range of sub-fracture damage levels during in vivo cyclic loading. A total of 98 right forelimbs of anesthetized, male, 5-month old Fischer rats were loaded cyclically (2 Hz) in axial compression. Rats were ki...
متن کاملRole of Calcitonin Gene-Related Peptide in Bone Repair after Cyclic Fatigue Loading
BACKGROUND Calcitonin gene related peptide (CGRP) is a neuropeptide that is abundant in the sensory neurons which innervate bone. The effects of CGRP on isolated bone cells have been widely studied, and CGRP is currently considered to be an osteoanabolic peptide that has effects on both osteoclasts and osteoblasts. However, relatively little is known about the physiological role of CGRP in-vivo...
متن کاملSelf-Repair of Rat Cortical Bone Microdamage after Fatigue Loading In Vivo
Bone microdamage can be repaired through bone remodeling induced by loading. In this study, a loading device was developed for improved efficiency and the self-repair process of bone microdamage was studied in ovariectomized rats. First, four-point bending fixtures capable of holding two live rats simultaneously were designed. Rats were loaded and subjected to a sinusoidal wave for 10,000 cycle...
متن کاملMechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling?
The structural competence of the skeleton is maintained by an adaptive mechanism in which resident bone cells respond to load-induced strains. To investigate the possible role of the messenger molecule nitric oxide (NO) in this response, we studied NO production in well-characterized organ culture systems, rat long bone-derived osteoblast-like (LOBs) cells, and embryonic chick osteocytes (LOCYs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2011